GREARN.A.I. (Green Learn With Artificial Intelligence): Smart Greenhouse Berbasis Kecerdasan Buatan Untuk Pembelajaran Interaktif

Authors

  • Mhd. Hadid Luthfi Kahfi Umum
  • Dicky Mahaputra Tarigan Umum

Keywords:

Smart Greenhouse, Artificial Intelligence (AI), Internet of Things (IoT), Pertanian Presisi, Efisiensi Air, Pembelajaran Interaktif

Abstract

Perkembangan teknologi Artificial Intelligence (AI) dan Internet of Things (IoT) telah mendorong inovasi signifikan dalam bidang pertanian presisi, termasuk pengembangan smart greenhouse berbasis sistem otonom dan prediktif. Penelitian ini mengusulkan dan mengimplementasikan Grearn.A.I. (Green Learn with Artificial Intelligence), yaitu rumah kaca cerdas yang mengintegrasikan sensor lingkungan, sistem aktuator otomatis, dan modul analisis visual berbasis kecerdasan buatan sebagai media pembelajaran interaktif sekaligus sistem pertanian berkelanjutan. Sistem dibangun menggunakan mikrokontroler ESP32-S3 yang mengendalikan sensor suhu, kelembapan tanah, intensitas cahaya, pH, dan level air, serta aktuator berupa pompa air, kipas, mist maker, dan servo atap otomatis. Hasil pengujian menunjukkan bahwa Grearn.A.I. mampu menjaga stabilitas mikroklimat (25–30 °C; 60–75% RH) dengan respons terhadap stres lingkungan dalam 3–5 detik dan meningkatkan efisiensi penggunaan air hingga 50% dibandingkan irigasi manual. Selain itu, indikator fisiologis tanaman seperti Fv/Fm dan Soil Water Content (SWC) menunjukkan pertumbuhan lebih optimal dan deteksi dini stres kekeringan pada tanaman uji. Dengan demikian, Grearn.A.I. tidak hanya meningkatkan efisiensi pertanian, tetapi juga berpotensi menjadi sarana edukatif berbasis teknologi untuk literasi AI, IoT, dan pertanian presisi menuju pengembangan inovasi hijau berkelanjutan

References

Agustirandi, B. (2024). Analysis, comparison, calibration, and application of low-cost soil moisture sensors in smart agriculture based on the Internet of Things. TELKOMNIKA (Telecommunication Computing Electronics and Control), 22(5), 1035–1048.

Attia, M., Belghar, N. E., Driss, Z., & Soltani, K. (2025). Automated hydroponic system measurement for smart greenhouses in Algeria. Solar Energy and Sustainable Development Journal, 14(1), 111-130.

Clemens, C., Jobst, A. E., Radschun, M., Himmel, J., & Kanoun, O. (2024). Signal processing and calibration of a low-cost inductive rain sensor for raindrop detection and precipitation calculation. Measurement, 227, 114286.

Correa-Quiroz, J. J., Toribio-Barrueto, M. A., & Castro-Vargas, C. (2025). IoT System with ESP32 for Smart Drip Irrigation and Climate Monitoring in Greenhouses. Emerging Science Journal, 9(3), 1133-1157.

Demir, F. (2025). A real-time water level and discharge monitoring station. Applied Sciences, 15(4), 1910.

He, J., Goh, K. J., Qin, L., Shen, Y., & Rahardjo, H. (2025). Identifying plant health indicators of five tropical perennials using certain leaf physiological traits during drought stress and re-watering. Horticulturae, 11(3), 230.

Hoseinzadeh, M., & Garcia, D., A. (2024). Ai-driven innovations in greenhouse agriculture: Reanalysis of sustainability and energy efficiency impacts. Energy Conversion and Management: X, 24, Article 100701.

Katharria, A., Rajwar, K., Pant, M., Snasel, V., & Deep, K. (2025). Information Fusion in Smart Agriculture: Machine Learning Applications and Future Research Directions. Available at SSRN 5187083.

Kirci, P., Ozturk, E., & Celik, Y. (2022). A novel approach for monitoring of smart greenhouse and flowerpot parameters and detection of plant growth with sensors. Agriculture, 12(10), 1705.

Mordor Intelligence. (2025). Smart Greenhouse Market Size, Share, Growth & Industry Analysis (2025 – 2030). Retrieved from https://www.mordorintelligence.com/industry- reports/smart-greeenhouse-market

Mudrilov, M., Ladeynova, M., Grinberg, M., Balalaeva, I., & Vodeneev, V. (2021). Electrical Signaling of Plants under Abiotic Stressors: Transmission of Stimulus-Specific Information. International Journal of Molecular Sciences, 22, 10715(2).

Nemlaha, E., Střelec, P., Horák, T., Kováč, S., & Tanuška, P. (2022). Suitability of MQTT and REST communication protocols for AIoT or IIoT devices based on ESP32 S3. In Proceedings of the Computational Methods in Systems and Software (pp. 225-233). Cham: Springer International Publishing.

Polat, M. Y. (2022). An Arduino-based cost effective and portable luxmeter. Ziraat Mühendisligi, (377), 19-25.

Sharma, R. K., Kaur, J., Feng, G., Huang, Y., Kumar, C., Wang, Y., ... & Dhillon, J. (2025). Maize and soybean yield prediction using machine learning methods: a systematic literature review. Discover Agriculture, 3(1), 64.

Shehata, A. B., AlAskar, A. R., Aldosari, R. A., & AlMutairi, F. R. (2023). Characterization of the calibration results of glass electrode pH-meters using buffer solutions certified by different producers. European Journal of Applied Sciences, 11(6), 14–22.

Soussi, A., Zero, E., Sacile, R., Trinchero, D., & Fossa, M. (2024). Smart sensors and smart data for precision agriculture: a review. Sensors, 24(8), 2647.

Sukhov, V., & Sukhova, E. (2021). Electrical Signals, Plant Tolerance to Actions of Stressors, and Programmed Cell Death: Is Interaction Possible?. Plants, 10, 1704(20).

Tempelaere, A., Phan, H. M., Van De Looverbosch, T., Verboven, P., & Nicolai, B. (2023). Non-destructive internal disorder segmentation in pear fruit by X-ray radiography and AI. Computers and Electronics in Agriculture, 212, 108142.

Wang, Y., Zhang, Q., Yu, F., Zhang, N., Zhang, X., Li, Y., & Zhang, J. (2024). Progress in research on deep learning-based crop yield prediction. Agronomy, 14(10), 2264.

Wardani, I. K., Ichniarsyah, A. N., Telaumbanua, M., Priyonggo, B., Fil’aini, R., Mufidah, Z., & Dewangga, D. A. (2023). The feasibility study: Accuracy and precision of DHT22 in measuring the temperature and humidity in the greenhouse. IOP Conference Series: Earth and Environmental Science, 1230(1), Article 012146.

Wardihani, E. D., Purwanto, P., & Sari, D. (2024). Monitoring and controlling of IoT-based greenhouse parameters with the MQTT protocol. JNTETI, 13(1), 38-43.

Downloads

Published

2025-12-30